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The problem of the flow around a circular cone according to the Ryabushinskii scheme by an axially 

symmetric subsonic compressible fluid is considered in a non-linear formulation. A numerical- 

analytical method is proposed for solving the problem, based on the use of the variables of a velocity 

hodograph, and is a development of the method proposed (11 for calculating the jet efflux from a 

funnel-shaped vessel. Results of a numerical investigation of the cavitating flow around a disc and 

cavitator with a conical channel by an axially symmetric subsonic stream of water are presented. 

Problems of the axially symmetric cavitating flow of an incompressible fluid have been solved 
numerically in a non-linear formulation in many papers. Cavitators in the form of a sphere, a 
disc and a right circular cone were considered. The most important results which follow from 
an investigation of the cavitating flow around a disc and a cone by an incompressible fluid were 
obtained in [2,3]. The results in [4,5] are in good agreement with them. 

Axially symmetric cavitating flows of a compressible fluid with a non-zero cavitation 
number Q have only been investigated previously in a linear formulation using thin-body gas 
dynamic methods [6-111. 

1. Consider the axially symmetric subsonic flow around a circular cone by a compressible 
fluid according to the Ryabushinskii scheme. We assume that the fluid is ideal and weightless 
and that the flow is steady, irrotational and isentropic. In the plane of the cylindrical coordin- 
ates X, r, the domain occupied by the flow is bounded by the segments AB and HA of the axis 
of symmetry X, by the generatrices of the cones BC and HG which make an angle 8, with the 
axis of symmetry and by the arc CDG of the free surface (Fig. la). The origin of coordinates is 
chosen so that the plane x= 0 serves as a plane of symmetry of the flow (the half-line DA 
belongs to this plane). 

Let h be the reduced velocity, M the Mach number, 8 the angle of inclination of the velocity 
to the x-axis (0 = 0 on AB, HA and DA) and h, and h, the values of 3L at an infinitely distant 
point A and in CDG, respectively (h, <h, s l), z = h/h,, ‘5, = h, /h,. In the (7, @-plane, the 
parts of the flow domain lying to the left of the plane x = 0 correspond to the rectangle 

(Fig. lb; the segment BB, corresponds to the stagnation point B). 
Introducing the velocity potential cp and the stream function w by means of the relationships 
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H A I 

Fig. 1. 

TCOS~=C~~ =(rv)-‘v;. zsintI=cp, =-_(rv)-‘Wxt v=P/Pe 

and putting z = x +ir, we write 

dz = z-I[&+ i(rV)-‘&leie 

By treating z and 0 as the independent variables, we obtain from (1.1) 

x,+ir, =7-‘[cp,+i(rv)-‘W,]e’e, K=2,9 

By cross differentiation of (1.2), we find 

‘Pe = rW)-’ w7 

(1.1) 

0.2) 

(1.3) 

(1.4) 

Using Euler’s equation pVdV +dp = 0 and the relationship dpldp= a2 (V is the modulus of 
the velocity and a is the velocity of sound), we reduce (1.4) to the form 

cpT = (rvr)_ ( M2 - l)~, +(rwsinC))-‘F (1.9 

F=zr-'(~,re - Werz)sine (1.6) 

Using (1.3) and (1.5), we obtain from (1.2) 

TX, = [(M* - l)\lre cose+.mge-ry, sinB](vr*)-’ 

rX, =[my,cose-yfesine](vz)-’ 

yr=G=[(M2-i)~r~sine+F+~,cosel(vz*)-’ 

ye =N=[~,Sin8+~eCOSB](V~)-‘, y=r* 12 

From (1.6) and (1.8), we find 

(1.7) 

(1.8) 

(1.9) 

Eliminating (p from (1.3) and (lS), we arrive at the equation 

L(w) = N(W, Y), N(WI Y) = &$ 

L(w) = (1 - M2)Wm 3- 2*\11, + (I+ M2m+f, 

(1.10) 
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In deriving formulae (1.7)-(1.10) we have used the assumptions regarding the steady, 
barotropic, potential and adiabatic nature of the flow but no actual relationship between the 
gas dynamic parameters. Relationships (1.7)-(1.10) (which were first obtained in [l]) are 
therefore applicable to the investigation of flows of compressible liquids and gases with 
different equations of state. 

The following conditions must be satisfied on the boundary of the domain X0 

v=O on ABB,CD, we=0 on AD, y=O on ABB, (1.11) 

Using (1.8) (1.9) and (l-11), Y can be expressed in terms of w 

Y=Y(y.f)=~cosO+~(ny,+yf)sinBdB+R(~) (1.12) 
0 

n(w)=v~j(v~z)-1(l-M2)~18=0 dz 
1 

Hence, the problem reduces to determining the function ~(7, 0), which satisfies relation- 
ships (l.lO), (1.9) and (1.12) in the domain C,, with the boundary conditions (1.11) and 

yJ > 0, (ce) E & (1.13) 

On CD, we have ye = 0 and the following formulae for the curvature K of the arc CD is 
therefore obtained from (1.7) and (1.8) 

K = w3e - wee 
( *+ 2)K 

Xe ‘e 
= -vrw;‘J,,,, 

5=10 

(1.14) 

Since w, = 0 on B,C, it follows from (1.4) that K + 00 on approaching the point of contact of 
the free surface with the surface of the cone (this assertion has been proved in [12] in the case 
of an incompressible fluid). 

2 Let us represent the solution of the problem in the form w = w” +x, where w” is the 
singular part of w which describes the behaviour of the stream function in the neighbourhood 
of point A and determines the topology of the flow. The method of asymptotic expansions is 
used in the search for $‘. 

Let us put 

o=arctg~ ar’ <=z-1, ol=(l-My (2.1) 

Here, M, is the value of M when h = h, and 61 E [0, rc] when (z, 6) E Co. 
We shall seek the asymptotic expansion of the function w” = ~“((3, o) with respect to 8, 

representing the principal term vol in the form vol = e-“h(o) (n = const, n > 0). Here 

I$ = -ae-“-* sin* ofi’, I$ = e-n-‘(+.. +j$sin2ci$) 

wz = a28+*(2sin3 wcosof,‘+sin4 ofi”, 

IJJ~: = e-n-* [n(n + I)& - (n + sin* m)sin 2a$‘+ %sin2 2ofi”l 

P-2) 

In accordance with (1.11) and (1.13), we subject vol to the conditions 
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#=o, o=o; yfO’=o, w=x; lyO5.0, O~WClc (2.3) 

When account is taken of (2.1) and (2.2), we obtain from the first equality of (2.3) that 

w -“-‘(-n. +sin6#) + 0, fi = O(O”), v”’ = O(<-“) as W + 0 (2.4) 

In expression (1.12), we put i+r = vol and change from the variables z, 8 to the variables 8, w 
(since z - 1 = a%ctgo, any analytic function z can be represented in the form of a series in 
powers of 0 with coefficients which depend on 0). When account is taken of (2.1), (2.2) and 
(2.4), we shall have 

Q(wO’) = O(c-“+I) = O(rP+‘), iwyl sinEI& = O(O-“+I) 
0 

lwO1 sin We = 0(8-n+* ), Y(w”’ ) = e-“fi (0) + 0(8-n+’ ) 

In relation (l.lO), we put w = v”’ and change to the variables 8, o. On equating the principal 
terms in the expansions of the left- and right-hand sides of (1.10) in powers of 8 (terms of the 
order of fl+2), we obtain a differential equation in A(o) from which, after the substitution 
L(o) = sin” wcpl(o) we obtain the equation 

[4 + (n2 - 4n)sin* o]q+p;+ [(4 + 2n - n*)sin* co - 41(p,(p;2 + Xsin 20((pi3 + n*tpfcp;) + 

+ (4n* - 2n3)sin2 ocpf = 0 (2.5) 

The conditions 

cp;(o)=o; q,(n)=O; cp,(o)>O, osw<n (2.6) 

are obtained from (2.3) for rpl(o). 
Analysis shows that a unique solution (apart from a constant factor) of problem (2.5), (2.6) 

exists and that it holds when n=2/3. The required function ‘pl is found by numerical 
integration of (2.5) from the point o= B-E (0~~61) to w= 0 taking account of the fact that 
the expansion 

holds in the neighbourhood of the point w = n. 
In the neighbourhood of the point w = 0 

(2.7) 

(2.8) 

where b= 1.4174112 (it is found by numerical integration). The function cp,(w) decreases 
monotonically from the value b to zero in the interval 0 s w s K while &(o) vanishes at the 
ends of the interval and has a single minimum. A plot of the function cp,(w) is shown in Fig. 2, 
curve 1. 

Hence, vol = Cx sir& ocpl(o) = l.t%p,(o), where l.~ = (a2 + t32)X, o = a(~-- 1). The quantities IJ 
and o serve as polar coordinates in the affinely transformed plane of the hodograph 6, 8 and 
all curves vol =const are similar. On approaching the singular point from all directions 
0 = cons& apart from w = x, wol, tends to infinity as peK (when o = qol = 0). 

A discrepancy of the order of 8 -55 is obtained as the result of the substitution of vol into 
Eq. (1.10). It is natural to seek the term following vol in the expansion of w”(8, o) with 
respect to 8 in the form wo2 = eXf2(w) while requiring that a discrepancy of the order of Kx 
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-4’ I 

Fig. 2. 

should be obtained as the result of substituting vol +wo2 into (1.10). 
By requiring that JJ:* = 0 when o = 0 and w” = 0 when w= rr, we obtain the boundary 

conditions for h(w) 

lim 0-% 
O-b0 ( 

-$ ++sin2Uf{ = 0, 
1 

lim(X-w)Kfi =0 
o-bn 

(2.9) 

It follows from (2.9 , in particular, that fi = O(O-~), vrn = O@) when o + 0 and, hence, 
Qwo2) = O@) = O(t3 $ ‘). When account is taken of the last relationship of (2.2), we find 

Y(w” +WM)=e-Kfi(o)+eKfi(oj+aBK~(w)+o(e%) 

F;(o)=3b(ctgw)H+F,(o), WE[O,11/2] 

F;(o)=F,(w), 6IE[K/2,7c] 

F,(o) = -(ctg2 0)X ~(tg2&yw)dw. 0 E [O, 1L / 2) 
0 

F,(o) = (ctg2 W)q(tg*W)Q’odw,(woI, w E (R/2,x] 

Fo(7c/2)=-3&2) 

From (2.10), taking account of (2.7) and (2.8) we obtain the expansions 

&(w)=3b& I-sJI*- 
( 

l 
zw4 

+ . . . 
9 1 

4(w)=% 3 ! 1-p+ z1 2 4 +*** 1 

(2.10) 

(2.11) 

It can be shown that the function F,(w) satisfies the equation 

F,‘(C0)++C2ce~(o)=-tg6&;(@ (2.12) 

and is analytic in the interval (0, x) and can be represented in the neighbourhood of the point 
0=x/2 in the form 
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The quantities F,(w), F,‘(w) outside of the neighbourhood of the point w = a12 can be found 
using formulae (2.10) or by numerical integration of (2.12) using (2.11). 

Let us put w = vol -I-W” in (1.10) and change to the variables 8, o. Equating terms of the 
order of cfmx in the expansions of the left-hand and right-hand sides of (1.1) in powers of 8, we 
obtain 

Pf;‘+ Qf; + Rfi = $, P=4sin2w(l-isin20)X2 (2.13) 

s=cq 
[ 

--%A’ +~sin20(1+qsin263)$~t+~sin2wcos*w#2 - 

-sin2Wcos4Wf;‘3]+( c, -b,)sin40cos26#3+ 
( 

EC -32 
9 i 

sbt cos2 w sin’ ofr2fi’+ 
i 

b, = 2(1- M2)-yz 0 * c, =(l+M2)(1-&42)-~ rl a 

Using (2.7), (2.8) and (2.11), it can be shown that, when o-+0 and w= x-t, t + 0 the 
expansions 

P(w)=b2dx 

Q(o)=b2& 8_??,2 + 
3 27 ) **. * 

Q(~-t)g'~ ~-160~2+_,~ 
( 3 27 

R(o)=b2& 
( 
--s+428w2+.., , 

9 81 ) 
R(rC--t)=t ‘K 

( 
-0 : I*52 +... 

9 81 

S(w) = b3c03 : o,co2”-*, S(n - t) = t9 i v,t2n-2 
II=1 !I=1 

a,=;(a,+c,-bl-2a). v]=y 

(2.14) 
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hold. 
It follows from (2.9) and (2.13) that the following boundary-value problem holds in the case 

of the function cpz(o) = sir8 e&(w) 

p,cp;+Q,cp; +R,cp, = S 19 4 = P, Q, =-$tgoP+Q 

R, = P-ictgcoQ+ R, S, =sinKwS 

(2.15) 

cp;(o)=o, (p2(x)=O (2.16) 

By substituting (2.14) into (2.15), it can be shown that (p*(o) can be expanded in the form 

(92(o) = n~,P”co”-” (P2(7c--t) = i w2” 
I!=1 

(2.17) 

and, moreover, the relationships 

P2j =ajP29 P2j+l =Pj +YjPl$ qj =Pj +Kjqlv _i=1929***V 

hold in which the coefficients clj, pi, yj, I+, icj are expressed in terms of the coefficients of the 
expansions (2.14). In particular 

(2.18) 

The second of the conditions (2.16) is satisfied in the case of the expansions (2.17) and the 
first is equivalent to the condition p2 = 0. The problem therefore reduces to searching for a q1 
for which, on integrating (2.15) numerically from the point o = X-E (0 <eel) using (2.17) and 
(2.18) to determine the values of cpz(rc-&), (P;(w-E), a function cp*(o) is obtained which 
satisfies the condition p2 = q;(O) = 0. 

The right-hand side of Eq. (2.15) can be represented in the form 

Sl = aIs,, + klS,k +&L + %Sl, (2.19) 

where k, = (1 -M,‘)-x, m, = kJ@, n, = k,Mi, S,,, & S,,, S,, are unknown functions of w 
which are independent of a, and M,. It is therefore convenient to use the representation 

(~2 = al% +QPD +m~%, +vh (2.20) 

and to determine each of the functions gza, (Pan, (P*,,,, gzn which depend solely on o from the 
solution of the corresponding boundary-value problem which is obtained when (2.19) and 
(2.20) are substituted into (2.15) and (2.16). 

Analysis shows that the expansions 

(&(o)=b -1+;02+... 
( 1 

, (P2a(7C-t)=2t2-3t4+... 

cp,,(O)=6(-2+O(w3)...), ~,,(7C-I)=-3r’+yt’+... 

(92m(W)=b ! ~+L2+... 1 
3 3 

, q2.(7c-I)=~t2- S+... 9 

q&(0)=b -f-$69+... 
( ) 

( (Pzn(X_t)=_13~2+77 4 

3 ii? +*.. 
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hold when o+O and W=K-t, t+O. 
The dependences of (pzo, (pzk, (Pi,,,, (Pi. on w are shown in Fig. 2 by curves 2-5. 
Let (p2(w) be the solution of (2.19, (2.16). Then waz = Clxsin-Xwcp2(w) =p%p,(w). Hence, the 

families wca = c > 0 and wo2 = c c 0 (c = const) in the (CT, 8)-plane consist of similar curves and 
they tend to zero as uX on approaching the singular point from any direction w = const @. 

3. Let us assume the function w” has been found with sufficiently high accuracy. 
The function x = w-w0 must serve as a solution of the boundary-value problem 

(3.1) 

x=-y0 in ABB,CD, &=O in AD (3 4 

There is practical interest in the cases when the magnitude of h, is close to h, (the 
magnitude of 2, is close to unity) and the gradients of the quantities which are determined in 
the interval AD and the part of the domain I;, adjoining it are large. When the problem is 
solved numerically, this leads to the need for a transformation of the independent variables. 

We shall use the following transformations which convert Co into X1 = ((5, Q IO ~5 c 1, 
O<qcl}. When 

20 < 2, + 8,(azo(zo - l)[ln2 - ln(fo - 1)lP 3 1 (3.3) 

we put [13, Section 5.61 

~=~(T)=F(P,JIT,), ~=g(e)=i-F(B,,i-e/e,) 
F(x,y)=ln[(x+y)/(x-y)]{ln[(x+l)/(x-l)l}-’ 

and determine the parameters PI, p2 (1 c PI, p2 < -) from the conditions 

f(l) = 0,5, f’(l) = w’(O) (3.4) 

(conditions (3.3) guarantee the unique solvability of Eqs (3.4) with respect to p, and p2). 
When only the first of the inequalities (3.3) is satisfied, we put 5 = f(z), f(1) = 0.5, n = 810,. 
When z ,a2 let ~=T/z,, Ij=e/e,. 

Equation (3.1) is written in the form 

l-(x) = N(yO + XI Y(wO +x)1 - UvO) 
r(x) = AX,,, + Bxg + CXs + % 

(3.5) 

We introduce a uniform rectangular grid in the (5, q)-plane with step sizes At with respect 
to 5 and An with respect to 11 and with grid points at the points (&, nj), where 5, =iAk, 
qj=iAq, i=O, l,..., Z, Z=O,l,..., J, ACZ = AnJ = 1. Let 5. be the value of 5 corresponding to 
z = 1 and let m be an index for which &,_1 G g,, 5, > &,. We shall denote quantities calculated 
at a point (&, qi) with the subscripts i, j and those calculated on the line 5 = ei by the subscript 
i. 

The determination of x reduces to solving an iterative sequence of linear boundary-value 
difference problems: x (“+‘)(n+l) (the approximation of the required function) is found using 
the scheme 

Xc”+‘) = (1 - w)x’“’ + wx cn+m o<ws 1, n=O,l,... , 
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and the solution of the difference problem 

A(X)j,j =l$‘, i=l,2 ,..., I-1, j=l,2 ,..., J-1 

*(X)i.i = 4.j (Xi.j+i - 2Xi.j + Xi.j-1) / An2 + Q,j (Xi.j+i - Xi,j-1) / 2Aq + 

+ 4(Xi+l,j -2Xi.j +Xi-1.j) 1 At2 + G(Xi+l,j - Xi-1.j )/2AC 

T(“) = N($ + p, Y(")) - L(yfO) 

A( 0 = U’“’ ,,o, Xi,-1 =Xi,lv i=m.m+L...,I-1 
(3.6) 

x0.j =-Wt,j* XI,j =-W~,j~ j=O,l,..., J 

xi,J i=O,l, . . . . I; Xi.O=O, i=O,l,..., m-l 

is accepted for x”“~‘. 
The method of successive upper relaxation is used in the implementation of the difference 

scheme (3.6). The partial derivatives of x(“‘, which occur in the expressions T(“‘, UC”) are 
calculated on the basis of a spline approximation of the grid values of xc”). 

As a rule, domains of negative values of the quantities w’“’ = w” +x@), Y(#“‘)+w~)sinO, 
arise outside of the neighbourhood of the singular point during the iterative process which 
subsequently become smaller and disappear. The following technique is used in order that the 
expression 2Y($“‘+ @‘)sin8 should not vanish (and T (“), 17’“’ become infinite) and that the 
iterative process should not diverge. If in Xl = ((ki, n.) E X1} min[Y(~~“~)+OS~~~sin9] = 
-m’“’ < 0, then we put Y 
y@) = Y&f’“‘). 

@) = Y(#“)) + 3m(“)(l- exp[S,(c - ~,J’+S,$]), and, otherwise we put 

The function vol + wo2 generates a broad range of negative values of Y(vol + w”). Allowing 
for this, it is convenient to put w” = v”’ + vrn exp[6,(2- 1)’ + S&I”], where 6,, 6, E [-20, -101. A 
function w” constructed using the technique described above retains all the required prop- 
erties, which are inherent in the sum vol + wo2, in the neighbourhood of the singular point and, 
at the same time, it is such that Y(w’) > 0 in Co. 

The use of formula (1.12) is not the only possible method for determining Y(@“). 
Moreover, this method does suffer from the drawback that the maximum errors which arise in 
determining x”” in the neighbourhood of a singular point, as a result of integration, extend 
upwards from and to the right of this neighbourhood. Formula (1.2) is therefore used to 
determine Y(#“‘) only at the beginning of the iterative process. Later, Y(#“‘) is determined 
using alternate integration of relationships (1.8) along those trajectories which pass around the 
neighbourhood of the singular point or just terminate at it. here, a spline approximation of the 
partial derivatives of x(“’ occurring in expressions (1.8) is used. 

It can be shown that the condition G, = H,, which follows from (1.8), is equivalent to Eq. 
(1.10). When this condition is satisfied, the value of y, found at an arbitrary point of the domain 
Co by integration of the expression dy = Gdz + H&l, is independent of the integration path. 
This consideration can be made use of in controlling the accuracy of the solution obtained. 

The proposed method of calculation can be used to investigate compressible liquid and gas 
flows with different dependences M(h), v(h). An experiment we carried out suggests that, in 
the case of the relations M(k), v(h), which hold in the case of an ideal gas, there is a fairly wide 
range of governing parameters for which the process of successive approximations, which has 
been described above, converges in a stable manner. 

Having determined ~(2, t3), T(Z, 0) simultaneously using the method described, there is no 
difficulty in finding all the required characteristics of the flow using (1.7) 
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4 We know [14] that, for many liquids, the relation between the pressure p and the density p in an 
isentropic process is given by the formula 

k 

where p,, p, B, k are certain constants. For water k = 7.15 [15]. The relationships 

M2= &+&,-‘, p=po(l-n1~2)“(k-1) 

(4.1) 

(4.2) 

(4.3) 

which are used below (a. is the critical velocity and p,, is the value of p at the stagnation point) are 
obtained from Bernoulli’s equation and (4.1) subject to the assumptions which have been made. 

Let pa, pa, V, be the pressure, density and velocity of the free flow, p, the pressure in the cavern, X 
the cavitator resistance and R,, the radius of the cavitator (the value of r at the point C). Moreover, 

R, = 1. Using (4.2) and (4.3), we obtain the expressions 

C = 2(1-&)i’(‘-k) r 
I P 

r2(.r0.%) 0 
r2(7,e,)(l-&2)“(k-‘)rd.s (45) 

for the cavitation number Q = 2(p, -p,)l(p,V,‘) and the drag coefficient C, = 2XI(np,V,2Ri). The equality 
Q = z”, - 1. is obtained from (4.4) in the limit when h,, h, +O. When 8, = II, we have r(z, Et,)= r(zO, 0,) 
and, in this case, it therefore follows from (4.5) that 

(4.6) 

C, = 7,” = l+Q is obtained from (4.6) in the limit subject to the additional condition h,, h, + 0. 

Let us consider a cavitator where the part around which the flow occurs is in the form of a cone with an 
aperture angle 8, in the range [n/2, R] (a disc or cavitator with a conical channel). Let E and F be points 
on the arc CDG of the free surface at which t3 =x/2 and 8=-n/2 respectively. Let RI and R be the 
values of r at points E and D (RL is the radius of the cavern in the plane of symmetry), let Z,,, Z, and L, 
be the projections of the vectors BH, CC and EF.on to the x-axis ( & is the length of the cavern, 
L, = L,, -2R,ctg&,), and let R, be the curvature of the arc CDG at point D. 

One version of the calculation using the proposed model assumes that the values of k, 0,, Q, h, are 
specified. However, for the case when h, = 0 (an incompressible fluid), the solution is independent of k. 

Furthermore, when h, = 0, the solution is general for all fluid models. 

In Table 1, we present the values of C,, 4 and 4, obtained for a series of values of Q in the 
calculation of the cavitational flow around a disc (0, = n/2) by an incompressible fluid using the method 
which has been described on an Z x .Z = 50x50 grid and also the corresponding values from [4]. A 
comparison shows that the differences are less than one percent. A similar estimate may be obtained by 
comparing the data presented below with the values of C,, & R, found using Guzevskii’s approximation 
formulae [3]. 

5. Calculations were carried out on an Z x J = 50 x 100 grid for flows of an incompressible fluid around 
cavitators with aperture angles of the cones 8, = n(6 + n)/12 (n = 0, 1, . , . (6) for Q = 0.15; 0.2; 0.3; 0.4; 0.5. 
Approximation formulae for the parameter C,, K,, RI, 4, L,, & of the following form were 
constructed on the basis of the results obtained 
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Table 1 

Q 4 Rz 141 Lz L2 141 c, c, 141 

0.2636 2.1184 2.115 10.043 10 1.0539 1.0513 

0.1477 2.6773 2.678 20.121 20 0.9559 0.9516 

0.1048 3.1045 3.109 30.105 30 0.9198 0.9150 

0.0819 3.4607 3.471 40.176 40 0.9021 0.8955 

0.0676 3.7693 3.788 50.257 50 0.8917 0.8833 

C," =a+b(l+Q)-'+cQ, d=dt+d~lnwl+d31n2wt 

Kf =aQ+bQ2 +cQ’, d=dt+dalno2+d30~ 

R~=l+a+bQ-*lnQ+eQ-l, d=dt~s+d2~g+d3~: 

PO=e+bQ-‘lnQ+eQ-‘, d=d~+d2h~112+d30$, P”=Ri,l_l”,~ 

03 =e, -5; d=a,b,c 

(5.1) 

(values of the parameters in the case when h, = 0 are given the superscript 0). 

The values of the coefficients ai, b, and c, for the approximation formulae and the values E of the 
maximum relative errors of the approximation are shown in Table 2. The differential characteristic Kl is 
calculated with a lower accuracy than the remaining integral and local characteristics, and the value of E 
for Kl is therefore substantially greater than for the other parameters. 

Table 2 

4 j= 1 2 3 104XE 

ai 0.08016 1.35824 -0.49618 
CI’ bi 0.34607 -0.48921 0.16908 5 

ci 0.80092 0.26089 -0.07998 

; 

0.04769 -0.01338 0.00018 
KY 1.08518 -0.48366 0.01198 137 

cj a.38103 0.18322 -0.00483 

4 0.01638 0.01924 -0.01035 
RY bj 0.00356 0.00025 -0.00058 13 

Li’ 0.00818 0.00063 -0.00142 

ai 0.61572 0.37494 -0.00857 
ti bj -0.05025 0.14946 -0.00319 16 

cj -0.05503 0.51617 -0.01131 

LY ; 
0.53405 -0.32871 0.00528 

-0.57861 -0.00703 -0,00194 22 
4 -0.19199 2.18048 -0.05274 

oi 0.61528 +I6052 

4 

0.01232 

bj -0.57545 -0).01431 -0.00142 20 
ci -0.18529 2.16486 -0.05 160 
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The following expression is obtained from (5.1) for the drag coefficient of the disc (0 = n/2) in an 
incompressible fluid 

C,” =0,7208+0,1118(1+Q)-‘+0.9296Q (0.15~Q~l) (5.2) 

It is interesting to compare (5.2) with the approximation formulae 

C,” =(0.827+0.026Q)(l+Q) (O.lcQ~0.6) (5.3) 

C,” =0.82825+0.86& (OsQ~0.25) (5.4) 

of which the first, which is given in [16, p. 4581 was constructed on the basis of a graph from [17] and the 

second is obtained, when 8, = x/2 from Guzevskii’s formula for a cone [3]. The differences in the values 

of C,“, calculated using formulae (5.2) and (5.3) in the interval 0.1 s Q G 1 do not exceed 0.3% and 0.075% 

in the interval 0.25 s Q s 1. The difference in the values of Ct, calculated using formulae (5.2) and (5.4) 
do not exceed 0.15% in the range 0.1 G Q s 0.5 and 0.06% in the range 0.15 s Q s 0.4. 
The nature of the approximation relations (5.1) can be described by the inequalities 

gco a@ co - 
’ ae 

xc0 
’ aQ 

aKP,o 
aQ ’ aQ 

i!C,, ac,O,, 
’ aQ ’ ae, 

as0 
-30, SO=-K;, RF, R;, c, e 
de0 

(5.5) 

where the inequalities (5.5) hold over the whole computational domain 0.15 4 Q e 1, x/2 s B0 s R while 

(5.6) are satisfied outside a certain neighbourhood of the range 0.15 S Q S 1, 6, = R, where the values of 

I aSo li33, I are small compared with the corresponding values when B. = x/2. 
The inequalities 

also hold for the whole of the computational domain. 

The quantities g/c and Cfr =C,“/(e)’ (C,, is the drag coefficient determined over the midsectional 
area of the cavern) depend weakly on 8, and the quantity g/c attains its maximum values when 

El0 = n/2. One unexpected fact is that the quantity 4, which characterizes the position of the points for 
which 8 =&x/2, does not take its maximum values on the boundary of the computational domain (when 

Q= 0.15) but when Q=O.3 for all values of t-lo in the range (x12, n). 
The dependence of some of the parameters on 8, when hc = 0 and Q = 0.15 is shown in Fig. 3. Curves 

14 correspond to the quantities 0.1 x G, Cz + 1, 100 x Kf, e - 1. Curve 5 shows how C,” + 1 depends on 
8,; it was obtained on the assumption that the pressure distribution along the generatrix of the cone can 

be found from the solution of the corresponding planar problem, as was done in [X3, 191. 
In Fig. 4, curves 1-3 depict the dependence Li(tl,) for Q = 0.15, 0.3 and 1, respectively. For each Q, a 

o, = o,(Q) exists such that Li = 0 when 8, = w, (dw,ldQ < 0), L”, < 0 when w. <El0 s rr, Lt + * when 
8, + n. The domain occupied by the flow in the (x, r)-plane is therefore two-sheeted when w. < 8,~ 1~. A 
diagram of the flow when w, < 8, c TI and B. = R is shown in Figs 5(a) and (b). 

6 Calculations were carried out on the cavitational flow around a disc (e, = n/2) by a stream of water 
(k = 7.15) for Q = 0.15; 0.2; 0.3; 0.4; 0.5; M,’ = 0.2; 0.4; 0.6; 0.8; 1 (M, is the value of the Mach number when 
h = hc) on an Z x J = 50 x 50 grid. Approximation formulae were constructed for the parameters C,, K,, 

&, 4 (Lo = L, = 4, R, =1 when e2 = x/2) on the basis of the results obtained. These have the following 
form 
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C, =a($. h=@, K, =yKp, Rz =6R$ 

p=l+FI,+&+hM~, p=a,fiy,6, d=d,+d,Q-‘lnQ+d,Q-‘. d= f.g,h 

(6.1) 

Here, C,“, c, Kf, I$‘are functions of Q obtained in accordance with formulae (5.1) and Table 2 when 
8, =x/2. The values of the coefficients f,, g,, Ir, for the approximation formulae (6.1) and of E, the 
maximum relative errors in the approximation are presented in Table 3. 
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Table 3 

4 j=l 2 3 104x E 

-0.00599 0.03688 0.10945 
-0.01706 -0.02887 -0.08055 9 
0.01808 0.00201 0.00992 

0.29589 a.01529 a.02098 
-0.57432 0.13310 0.30976 23 

0.28978 -0.09167 -0.20660 

-0.50861 0.05969 0.10518 
0,89609 -0.23137 -0.51375 127 

-0.42967 0.14014 0.30676 

-0.ooO28 0.01514 0.04757 
Xi.0287 1 -0.01376 -0.03329 II 

0.01245 0.00858 0.00988 

The nature of the dependence of the quantities a, p and y on Q and M, in the domain Q E [0.15, 11, 

MC E [0, l] can be described by the inequalities 

aa>, aa<, ap,, ap<, *<o 3.0 
a4 ’ aQ ’ aM, ’ aQ ’ aM, ’ ae 

Hence, as MC increases for a fixed value of Q E [O.lS, 11, C, and & become larger while Kl decreases 
and, moreover, the change in the parameters is greater, the smaller the value of Q. 

The parameters a, p, y and 6 as functions of M," when Q = 0.15, 0.35 and 1 are shown in Fig. 6 (curves 
l-3 respectively). The relation 6(M,, Q) is quite complex. As Q decreases, the value of MC at which 
6(M,, Q ) attains its maximum value 6, decreases, but 6, itself increases. When Q is reduced, the 
magnitude of 6(1, Q) increases when Q E [l, 11, where q = 0.235 and falls off when Q E [0.15, q]. 

The greatest change in the parameters a, p, y and 6 (the greatest change in the quantities C,, &, K, 
and 4 because of the compressibility of water in the case of a disc) was 12.7, 22.9, 32.2 and 2.9%, 
respectively, in the range Q E [0.15, 11, MC E [0, 11 

Putting L=L,/(2R,), L"=c/(2e), o=p/6, we write by analogy with (6.1) the equality L = aLo (L is 
the length of the cavern, a=a(M,, Q)). It follows from the approximation relationships (6.1) that the 
inequalities ib/aM, >O, ilo/aQ<O hold in the range Q~[0.15, 11, M, E[O, 11. According to the last of 

these inequalities, the effect of compressibility on the elongation of the cavern increases as Q decreases. 

Meanwhile, an analysis of the solution of the problem in a linearized formulation leads to a contradictory 
assertion [9, lo]. This apparent contradiction is explained by the difference in the domains of applicability 
of the results: the results obtained in 19, lo], using the assumptions of the gas dynamics of a thin body, are 
valid for small Q numbers (the smaller the value of Q, the more accurate are the equations) and for M, 
numbers which are sufficiently far from unity. 

The dependence of the elongation L of the cavern behind the disc on the number Q for the values 
M, =O, 0.6 and 1 is shown in Fig. 7 (curves l-3 respectively). In order to construct curves 1 and 2 in the 
interval 0.075 s Q s 0.15, the left boundary of which is marked by means of a broken line, the results of 
the solution of four additional versions of the problem were used. These versions correspond to the 
values Q = 0.075, 0.1 and M, = 0, 0.6 (it is not possible to obtain a solution for these values of Q when 
M, = 1). As Q decreases in the range 0.075 G Q s 0.1, the ratio of the ordinates of curves 2 and 1, which is 

equal to ~$0.6, Q), approaches unity. This confirms the non-contradictory nature of the results of the 
linear and non-linear theories. At the same time, there are no reasons to expect that the ratio of the 
ordinate of curves 1 and 3 will tend to unity when Q + 0 when they are extended into the region of small 

Q values. 
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Fig. 7. 

7. Further calculations were carried out on 36 versions of the governing parameters corresponding to 
the values k = 7.15; Q = 0.15; 0.2; 0.4; 1; M,” = 0.5; 0.75; 1; B0 = 2x13, W6, n. It was established that, in the 

calculation of the parameters L,, &, K,, 4 using the approximation formulae 

L,=&', L, =@, K,=yK;, R2=@ (7.1) 

where c, q, Kf, g are functions of Q and t$, defined by formulae (5.1) and Table 2 and p, y and 6 are 

functions of Q and M, defined by formulae (6.1) and Table 3, the resulting error does not exceed 2% for 

Kl and 1.5% for L,, & and RL. Formulae (7.1) are therefore suitable for use in the range Q l [0.15, 11, 

M, E [0, 11, O0 E [x/2, n]. 
To calculate C, over the same range, it is better not to use a formula of the form (7.1) but the 

approximation relationship 

c,=c;+4(c;:-c~)(l-eo/x)* 

where C: is the exact value of C, when 8, =n:(see (4.6)) and C: is the value of C, when 8, = n/2 
calculated using the first of formulae (6.1). The resulting error in this case does not exceed 0.5%. 

It is not possible to propose a convenient approximation formula for calculating the values of RI when 

MC #O. However, it may be stated that, as MC increases from zero to unity, the magnitude of R, 
decreases, but by not more than 1%. 

It follows from the determination of the cavitation number Q that 

M,‘=~(P, -~uMw,2Q) (7.2) 

holds in the case of steam cavitation, where p, is the pressure of the saturated vapours at the specified 
temperature and Mi and a, are the values of the number M and the velocity of sound a in the 
unperturbed flow. By using the well-known values of p,, p., a, c and (7.2), it can be readily shown that, 
under normal conditions when the pressure of the approach stream p0 is of the order of 1 atmosphere, 
negligibly small values of M, and MC correspond to the value Q = 0.15. As pa increases at the fixed value 

of Q = 0.15, the values of M,, and M, become larger but it is only at a value of pa of the order of 900 

atmospheres that M, attains a value of unity. From what has been said, it has to be acknowledged that 
(6.1) and (7.1) are of greater theoretical than practical interest. 
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